보헤미안 랩소디가 한국에서 울려퍼지다 - 현대카드 슈퍼콘서트 25 QUEEN

흔치않은일상 2020. 1. 19. 17:14


 지난 2018년 10월 국내에 첫 개봉된 영화 '보헤미안 랩소디'를 통해 영국 락밴드 Queen의 인기가 폭발하였던 기억이 나네요. 무려 40여년 전에 세상에 나온 노래 ' Bohemian Rhapsody'가 이곳 저곳에서 울려퍼졌습니다. 뿐만 아니라 Queen의 대표곡들이 카페와 버스 안에서 라디오를 통해 전파를 타고 사람들이 이토록 팝송에 열과하는 현상을 유래가 없을 정도였지요.

 그렇게 한 시기의 유행처럼 지나가 잠시 기억에서 잊혀져 갈 때 즈음 반가운 소식을 듣게 되었습니다. Queen의 내한이 확정되어 2020년 1월 18일과 19일 공연을 하게 된 것이지요.

 저도 영화 보헤미안 랩소디 영화를 보고난 후 퀸의 공연을 해외에서 직접 관람해보고 싶었던 꿈을 갖고 있었는데 이렇게 한국을 찾아와 공연을 하게 된 것이 상당히 기뻤습니다. 2년전 여름 일본에서 TUBE의 공연을 보고난 후 오랜만에 보게되는 공연이라 상당히 기대됩니다.

 무려 6개월 전부터 티켓을 예약하고 잊고 있던 와중에 집으로 티켓이 배송오더군요. 이제 이 티켓을 들고 공연이 열리는 고척스카이돔으로 향합니다.

고척스카이돔으로 가기 위해 구일역 2번 출구에서 내립니다.

응원도구를 판매하시는 분들도 Queen의 공연임을 알고 있었던걸까요?

구일역 2번 출구에서 내리면 입장하는 곳 까이 현수막으로 안내가 되어 있습니다.

공연장에 들어가기 전에 소지품을 맡겨야 합니다.

흔치않은 공연날이라 카메라를 들고 왔는데 공연장에 카메라를 들고 들어갈 수 없다는 걸 처음 알았습니다.
아직 공연을 잘 모르는 분들이라면 참고해주시길

걷다보니 저 멀리서 사람들이 길게 줄을 서 있었습니다.

자세히 보니 기념품 판매점 줄로 보입니다.
아침부터 줄을 서 있던 분이 계시다고 하시데군요.

일부 미판매 티켓의 경우 현장에서 예매가 가능합니다만
좌석은 매진되어 스탠딩 좌석만 구매가 가능하다고 하더군요.

우리나라에 이렇게 Queen의 현수막이 걸릴줄이야

입장 30분전. 아직까지는 여우가 있어 보입니다.

지정된 입구 이외의 입구는 출입이 통제되어 있습니다.

스탠딩의 경우 경기장 지하주차장에서 대기하게 됩니다.
겨울에는 상당히 춥다고 하더군요.

평소 돔구장이던 경기장이 오늘은 Queen의 공연장이 되었습니다.

공연장 인근에는 각종 행사들이 진행되고 있었습니다.

프레디와 브라이언을 흉내내는 분들 재치있습니다!

현대카드에서 지금까지 개최되었던 콘서트 리스트가 소개되어 있습니다.

입장이 시작되면 지정석 보유자들은 이 곳을 통해 입장하게 됩니다.

기념품점은 공연이 임박한 지금까지도 인산인해를 이루고 있습니다.

추운날 줄 서 계시느라 다들 고생이 많습니다.

입장이 시작될 때가 되어서인지 스탭들이 분주히 움직이고 있습니다.

공연장에는 생각보다 많은 물건들이 반입을 허용되지 않고 있습니다.
혹시 공연을 가시게 되는 분들은 꼼꼼히 살펴보시길

기둥쪽을 보니 로저, 애덤, 브라이언의 사진이 보이는군요.

공연장에 입장하기 전에 잠시 다리 건너 롯데마트에 들렀다 갑니다.

다리 건너에서 바라본 경기장의 모습
롯데마트에 카메라를 맡기고 다시 경기장으로 돌아갑니다.

지정석 입장이 시작될 대 즈음 스탠딩 관객들이 입장을 합니다.

제 자리는 209번 구역인데요 생각보다 무대가 잘 보였습니다.

스탠딩 관객분들께서 도착하자마자 바로 팬스 근처로 달려갑니다.

스태프들의 안내에 따라 관객들이 질서있게 들어옵니다.
중간에 불미스러운 일로 싸우시는 분들이 계시더군요.

반면 지정석은 자리가 정해져 있기 때문에 굳이 일찍 들어와 있을 필요는 없습니다.

무대의 중앙을 보니 스크린으로 왕관을 표현한 것 처럼 보이더군요.

무대가 정면이 아니면 공연을 관람하는 것이 힘들까봐 걱정했는데
어느 자리에서 보아도 무대가 잘 보입니다.

어느덧 무대 근처 팬스는 사람들이 금방 자리를 차지합니다.

공연이 시작되기 전 팬스 근처에 자리를 잡지 못한 분들은 바닥에 앉아서 기다리고 계십니다.

공연이 임박하자 스탠딩석에 사람들이 상당히 많이 모였습니다.
지정석도 자리가 거의 다 찼습니다.

어느덧 공연이 시작되고 사람들이 다같이 스마트폰을 들고 공연장을 촬영합니다.

폰카로는 공연을 찍는게 상당히 힘들더군요.
자세한 공연 내용은 아래 동영상을 보면 분위기를 알 수 있을 것입니다.



 공연은 최고였습니다. 돔구장의 시설을 적극적으로 활용하여 마치 우주에서 공연을 보는 듯한 기분이었습니다. 다음에 기회가 된다면 다시 한 번 공연을 관람하고 싶네요. 과연 퀸의 다음 공연은 어떤 모습일지 기대해봅니다.



Generalized Estimating Equations(일반화 추정 방정식)

공대생의 팁 2020. 1. 3. 23:42


 피험자 그룹에서 반복 측정(반응[Response] 및 공변량[Covariate])한 결과를 관찰한다고 가정해봅니다. 이러한 공변량을 기반으로 각각에 대한 예상 반응 모델링을 하고자 할 때 아래와 같은 몇 가지 경우가 있습니다.

  • ■ 몇 가지 통제된 식단 중 하나를 각 사람들 개별로 할당하고 시간이 지남에 따라 콜레스테롤 수치를 측정

  • ■ 시간의 경과에 따라 얻은 값과 어떤 변수의 관계 연구

  • ■ 아이를 갖는 것이 여성의 노동력 참여 가능성에 미치는 영향 결정

 위와 같이 (반복해서 측정하여 얻은) 패널 데이터가 갖는 장점은 시간적 차이가 없고 관찰할 수 없는 개인 간의 차이를 제어할 수 있다는 점입니다. 개인당 다중 관측치를 갖는 것은 개인 내 변화를 기초로 추정치를 산출할 수 있게 합니다.

 이러한 위의 경우들을 분석하는데 가장 쉬운 방법은 공변량이 결과에 적층 효과(Additive effect)를 미치는 데이터에 선형 모델을 적합화하는 것입니다. 변수가 선형 관계가 아닌 다른 것에 영향을 받는 경우(관심의 반응이 확률인 경우) 일반화 선형 모델(Generalized Linear Model)이 더 적합할 것입니다. GLM에는 다음과 같은 식이 있습니다.

$$Y_i = \mu_i + \varepsilon_i, \qquad g(\mu_i) = X_i'\beta$$

 여기서 개별 \(i\)의 경우 \(Y_i\)는 반응, \(X_i\)는 공변량, \(\beta\)는 계수의 벡터, \(\varepsilon_i\)는 임의의 오차, g는 가능한 반응 집합에서 공변량의 선형 함수에 사상되는 연결 함수(Link function) 입니다.

 매개변수를 추정하고 GLM을 추론하기 위해서는 오류가 독립적이고 동일하게 분포되어 있다고 가정해야 합니다. 패널 데이터의 경우, 각 개인에 대한 관찰은 상관관계가 존재하기 때문에 이는 명백히 사실이 아닙니다.

 한 가지 가능한 해결책은 모델 피팅에 피험자별 임의 효과(Random effect)를 포함하는 것입니다. 이 방법은 GLMM(Generalized Linear Mixed Model)이라고 부릅니다. GLMM은 모수적 가정(Parametric assumption)을 필요로 합니다.

 일반화 추정 방정식(Generalized Estimation Equation)은 이를 처리하기 위한 비모수적 방법(Nonparametric assumption)입니다. GEE의 아이디어는 모든 피험자에 대해 평균을 내고 대상 내 공분산 구조를 잘 예측하는 것입니다. 데이터가 특정 분포에서 생성되었다고 가정하는 대신 공변량과 반응 사이의 관계를 설명하기 위해 반복적으로 최선의 \(\beta\)를 선택하기 위해 모멘트 가정을 사용합니다.

 주의사항: GLMM과 GEE에 대한 결과물 해석은 다르다는 점을 유의 바랍니다.


피험자별 vs 전인원 평균

 GEE는 인구 평균 효과(Population average)를 추정합니다. 아래의 두 시나리오를 생각해봅니다.

● 시나리오1: 당신은 의사이고 스타틴 약이 당신의 환자가 심장마비에 걸릴 확률을 얼마나 낮출 수 있는지 알고 싶다.
● 시나리오2: 당신은 보건소 공무원이고 심장마비 위험에 처한 모든 사람들이 그 스테틴 약을 복용한다면 심장마비 사망자수를 줄일 수 있는지 알고싶다.

 첫 번째 시나리오에서는 각 개별 확률을 알자 합니다. 두 번째 시나리오는 전체 인구에 대한 예측에 관심을 두고 있습니다. GEE는 두 번째 시나리오에서 추정할 수 있지만 첫 번째 시나리오에서는 알 수 없습니다.

GEE의 기초

 GEE는 인구 평균 모델 매개변수와 이들의 표준 오류를 추정합니다. GEE에 대한 가정은 GLM에 대한 가정과 비슷합니다.

  • 1. 응답 \(Y_1, Y_2, ... , Y_n\)은 상관관계가 있거나 무리를 이룬다.
  • 2. 연결함수 g에 의해 설명된 공변량과 반응의 변환 사이에는 선형 관계가 있다.
  • 3. 피험자 내의 공분산에는 몇 가지 구조("working 공분산")가 있다.
  • ● 독립성(시간 경과에 따른 관찰은 독립적)
  • ● 교환가능(시간 경과에 따른 모든 관측치에는 동일한 상관 관계가 있음)
  • ● 비정형(모든 시점 간의 상관관계는 다를 수 있음)

 GEE에 맞추기 위해 이러한 working 공분산 구조 중 하나를 선택해야 합니다. GLM과 마찬가지로 GEE는 반복적으로 최소 가중치를 조정하여 가중치로 작용하는 공분산 행렬을 연결합니다. 가중 최소 제곱 문제는 등식 추정식(Eponymous estimating equation)입니다. 만약 최대 가능성(Maximum likelihood)에 익숙하다면, 이 방정식을 Score function(log-likelihood의 1차 미분값)이라고 생각할 수 있습니다. 이 함수는 \(\beta\)의 최적 선택시 0과 같습니다.

 데이터 생성 과정(선형성)에 어떤 구조를 적용하더라도 분포를 완전히 특정하지 않습니다. \(\beta\)추정은 순전히 최적화의 연습입니다.


공분산이 잘못 정의되어 있는 것이 걱정된다면?

 β를 추정하기 위해서는 공분산 구조를 선택해야 하지만, 만약 β가 올바르게 나타나지 않는다면 어떻게 해야할까요?

 추정 방정식은 실제로 첫 번째 경우를 기준으로 하기 때문에 \(\beta\)는 Working 공분산 구조가 잘못되었다 하더라도 일관되게 추정될 수 있을것입니다. 그러나, 이로부터 계산된 표준 오차는 잘못될 것입니다. 이 문제를 해결하기 위해서는 견고성(Robustness)을 위해Huber-White의 "샌드위치 추정기(Sandwich estimator)"를 사용하여 GEE를 사용합니다. 샌드위치 분산 추정기의 기본 개념은 아이디어는 경험적 공분산을 사용하여 기본 공분산에 근사화하는 것입니다.

 그렇다면 왜 Working 공분산을 지정해야할까요?

1. 통계 효율(Statistical efficiency)
2. 샌드위치 견고성(Sandwich robustness)는 표본이 큰 특성값

  그렇다면 항상 샌드위치 추정기를 사용해야만 할까요?

 아닙니다. 만약 아래와 같은 경우가 생길 경우 그렇지 않습니다.

1. 독립된 피험자의 수가 반복되는 측정치의 수보다 훨씬 적을때
2. 설계의 균형이 맞지 않을때(반복되는 측정치의 수가 개별로 다른 경우)

장점

● 최대우도측정(Maximum Likelihood Estimation)에 비해 계산이 단순합니다.
● 분포에 대한 가정이 없습니다.
● 상관 구조가 잘못 정의되어 있더라도 추정치는 일치합니다.(평균 응답에 대한 모델이 올바르다고 가정하였을 때)

한계

● 우도 기반 방법(Likelihood-based method)은 통상적인 통계적 추론에 사용할 수 없습니다. GEE는 준우도 방법(Quasi-likelihood method)입니다.
● GEE는 단지 추정 절차일 뿐이므로 모델 선택을 수행하는 방법이 명확하지 않습니다. 적합도 측정은 쉽게 구할수가 없습니다.
● 피험체에 특정된 측정을 할 수 없습니다.

GEE의 확장

● GEE2: 2차 연장
    ○ 여기서 소개한 GEE의 버전은 GEE1입니다.
    ○ 아이디어: 공분산을 연구하기 위한 더 복잡한 방정식을 사용합니다.

● 대체 로지스틱 회귀(Alternating Logistic Regression) (Carey, Zeger, and Diggle(1993)): 다른 조건으로 결과 모델링
    ○ 아이디어: 모델 연결에 상관관계 대신 로그 Odd ratio를 사용합니다.

GEE에 대한 심화학습

● 첫 번째 평균공분산(준우도 접근법)
샌드위치 추정기(Sandwich estimator)를 사용하여 공분산의 설정 오류(misspecification) 방지
인구 평균 효과(Population-averaged effects) 모델링
● 대상 내 의존성이 관찰되지 않거나 알려지지 않은 경우 유용성
● 여전히 대상 독립성을 가정(공변량에 따라 조건화됨)


참고자료: https://rlbarter.github.io/Practical-Statistics/2017/05/10/generalized-estimating-equations-gee/

아름다운 영일만에 기적이 울리다 - 영일만항선[2019.12.18]


 우리나라 물류의 주요 수송방법이 육로가 대부분이라고 하지만 철도를 이용한 수송이 육로보다 효율적이기에 지금까지도 철도를 통한 물류 운송이 활발하게 이어지고 있습니다. 그럼에도 춘장대역으로 대표되는 서천화력선과 같이 더이상 사용되지 않고 폐선되는 철로가 있기도 합니다.

 지난 2019년 12월 18일 화물철도인 영일만항선이 정식으로 개통되었습니다. 이번 포스팅에서는 새로 개통된 영일만항역 인근의 풍경을 담아보았습니다.



 지도를 보았을 때 영일만은 포항시에 둘러싸인 모습을 하고 있습니다. 호랑이의 꼬리 부분에 해당하는 호미곶이 영일만을 감싸는 듯한 모습을 하고 있군요.




 영일만항선은 포항역에서부터 영일만항까지 연결되어 있습니다. 영일만항 바로 옆에는 용한1리 해수욕장이 위치해 있습니다.



포항역에 내리다가 본 내일로 포스터

2019년 겨울 내일로는 만 34살까지 이용할 수 있습니다!



포항역에서 차로 15분 거리에 있는 포항국제컨테이너터미널에 도착하였습니다.



터미널 근처는 작은 어선들이 있습니다.



오늘 영일만항선의 개통식을 알리는 현수막들이 걸려있습니다.



최근 입체화 과정에서 사라져가는 건널목이 새로 만들어져있습니다.



아무래도 화물 열차가 많이 다니지 않아서인지 굳이 입체화를 할 필요가 없었던 듯 합니다.



희안하게 이 건널목에는 삼색 신호등도 설치되어 있습니다.

횡단보도가 없는 것으로 보다 기차가 지나갈 때만 동작하는 신호등인듯 합니다.



인근에 건널목이 있다는 표시판



철로는 컨테이너 터미널 내부로 연결되어 있습니다.



영일항만 주변은 공터가 대부분이었습니다.



곧 열차가 지나가려는지 청색 표시등이 켜져있습니다.



내부에서 개통식 행사를 하는 과정에서 시운전이 있었는지 멀리서 기관차가 보입니다.

다만 철문이 막혀있어 당장 건널목을 건널 수 없는 상황입니다.


이번에는 영일항만 근처 해수욕장을 찾아가 보았습니다.





해수욕장에 도착하자마자 서핑을 즐기는 사람들을 보았습니다.

이 추운 겨울에도 서핑을 하고자 하는 열정 대단합니다!



영일항만에 가려져서 이렇게 훌륭한 붕경을 보여주는 해수욕장이 근처에 있었다는 것이 신기하네요.



역시 동해안 답게 푸르른 바닷물이 인상깊습니다.



근처에 주차된 차량들이 상당히 많아 보이는데 무슨 일로 이 곳에 찾아온걸까요?



해수욕장에서 부터 방파제를 따라 만들어진 길을 산책해봅니다.



계속 걷다보니 아까 그 많은 사람들이 어디에 갔는지 알게 되었습니다.



어부가 잡은 물고기들이 바닥에서 싱싱하게 파닥거리고 있었습니다.



영일만 주변에 만들어진 방파제를 따라 사람들이 낚시를 즐기고 있었습니다!



등대 주변을 가보니 낚시를 즐기시는 분들이 많이 보입니다.



동해답게 물이 상당히 맑았습니다.

사진으로 다시 보니 실물보다 잘 안나오네요.



추운 날씨에 월척 한 마리 꼭 낚으시길!



다시 육지로 돌아가는길

생각보다 상당히 긴 길이었습니다.



저도 언젠가는 날씨 좋은 날에 바다낚시를 한 번 즐겨보고 싶네요!



다시 해수욕장에 돌아오니 서핑을 즐기시던 분들이 바다 바깥으로 나와계십니다.

가만히 서있기만 해도 추워보이는데 말이지요.



해수욕장과 영일만항을 함께 바라본 모습.



길 옆에 바닷가가 확 트인 모습 저는 매우 좋아합니다.



다시 포항역에 돌아가기 전 차 안에서 이 멋진 광경을 바라보며 영일만을 떠나갑니다... 



이 장소를 Daum지도에서 확인해보세요.
경북 포항시 북구 흥해읍 용한리 853 | 포항영일만항
도움말 Daum 지도