검색결과 리스트
글
안드로이드 프레임워크 프로그래밍(17) [Binder 드라이버 호출과정]
안드로이드 Binder 부분을 연구하는데 상당히 많은 지식이 필요하군요. 이제는 안드로이드 Application 단계에서는 상상도 못했던 linux 시스템 프로그래밍 단계까지 내려와보니 분석 난이도도 많이 높아졌음을 실감하고 있습니다.
이번 포스팅에서는 안드로이드 IPC 통신의 핵심이라 할 수 있는 Binder 드라이버가 호출되는 과정을 살펴보겠습니다. 본 포스팅을 이해하기 위해서는 linux 단계에서의 시스템 프로그래밍을 이해하셔야 이해가 수월하실 듯 합니다. 그럼 분석을 시작해 보도록 하겠습니다.
Binder 드라이버는 PrecessState가 생성될 때 함께 생성되는 구조로 되어 있습니다. 아래 코드를 보면서 이해해보도록 합시다.
/frameworks/native/libs/binder/ProcessState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ProcessState::ProcessState() : mDriverFD(open_driver()) , mVMStart(MAP_FAILED) , mManagesContexts(false) , mBinderContextCheckFunc(NULL) , mBinderContextUserData(NULL) , mThreadPoolStarted(false) , mThreadPoolSeq(1) { if (mDriverFD >= 0) { // XXX Ideally, there should be a specific define for whether we // have mmap (or whether we could possibly have the kernel module // availabla). #if !defined(HAVE_WIN32_IPC) // mmap the binder, providing a chunk of virtual address space to receive transactions. mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0); if (mVMStart == MAP_FAILED) { // *sigh* ALOGE("Using /dev/binder failed: unable to mmap transaction memory.\n"); close(mDriverFD); mDriverFD = -1; } #else mDriverFD = -1; #endif } LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened. Terminating."); } | cs |
현재 ProcessSate가 생성되면서 Binder 드라이버와 System Service를 등록하기 위한 mVMStart 부분을 보고 계십니다. 여기서 우리는 바인더를 호출하는 open_driver() 부분을 살펴볼 것입니다.
mDriverFD(open_driver())
open_driver() 함수는 binder의 file descriptor을 반환해줍니다. 이 함수를 통해 Binder가 호출됩니다.
/frameworks/native/libs/binder/ProcessState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | static int open_driver() { int fd = open("/dev/binder", O_RDWR); if (fd >= 0) { fcntl(fd, F_SETFD, FD_CLOEXEC); int vers; status_t result = ioctl(fd, BINDER_VERSION, &vers); if (result == -1) { ALOGE("Binder ioctl to obtain version failed: %s", strerror(errno)); close(fd); fd = -1; } if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) { ALOGE("Binder driver protocol does not match user space protocol!"); close(fd); fd = -1; } size_t maxThreads = 15; result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads); if (result == -1) { ALOGE("Binder ioctl to set max threads failed: %s", strerror(errno)); } } else { ALOGW("Opening '/dev/binder' failed: %s\n", strerror(errno)); } return fd; } | cs |
오늘 제가 주로 설명하게 될 코드입니다. 중요한 부분마다 자세하게 설명을 해 보도록 하겠습니다.
int fd = open("/dev/binder", O_RDWR);
open() 함수를 통해 binder 파일을 생성합니다. 보시면 아시듯이 binder는 하나의 파일에 불과했다는 것을 아실 수 있습니다.
fcntl(fd, F_SETFD, FD_CLOEXEC);
fd에 설정된 Binder를 Control 하는 함수 입니다. F_SETFD는 Binder인 fd에 FD_CLOEXEC 플래그를 설정하라는 의미입니다. 이를 설정해주었을 경우 exec를 통해 프로그램이 실행될 때 Binder가 close 되도록 해주는 역할을 합니다.
FD_CLOEXEC 설정에 대해 좀 더 자세히 알고 싶으신 분은 아래 링크를 통해 확인바랍니다.(영문)
http://stackoverflow.com/questions/6125068/what-does-the-fd-cloexec-fcntl-flag-do
status_t result = ioctl(fd, BINDER_VERSION, &vers);
Binder 의 입출력 설정을 바꾸어주는 역할을 합니다. BINDER_VERSION은 요청 코드 번호를 말하며, &vers는 포인터를 보내 값을 얻기 위해 사용합니다.
/bionic/libc/kernel/common/linux/binder.h
1 2 3 4 5 6 | struct binder_version { signed long protocol_version; }; /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ .... #define BINDER_VERSION _IOWR('b', 9, struct binder_version) | cs |
/bionic/libc/kernel/common/asm-generic/ioctl.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #define _IOC_NRBITS 8 #define _IOC_TYPEBITS 8 /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ #define _IOC_SIZEBITS 14 #define _IOC_DIRBITS 2 #define _IOC_NRMASK ((1 << _IOC_NRBITS)-1) #define _IOC_TYPEMASK ((1 << _IOC_TYPEBITS)-1) /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ #define _IOC_SIZEMASK ((1 << _IOC_SIZEBITS)-1) #define _IOC_DIRMASK ((1 << _IOC_DIRBITS)-1) #define _IOC_NRSHIFT 0 #define _IOC_TYPESHIFT (_IOC_NRSHIFT+_IOC_NRBITS) /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ #define _IOC_SIZESHIFT (_IOC_TYPESHIFT+_IOC_TYPEBITS) #define _IOC_DIRSHIFT (_IOC_SIZESHIFT+_IOC_SIZEBITS) #define _IOC_NONE 0U #define _IOC_WRITE 1U /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ #define _IOC_READ 2U #define _IOC(dir,type,nr,size) (((dir) << _IOC_DIRSHIFT) | ((type) << _IOC_TYPESHIFT) | ((nr) << _IOC_NRSHIFT) | ((size) << _IOC_SIZESHIFT)) extern unsigned int __invalid_size_argument_for_IOC; #define _IOC_TYPECHECK(t) ((sizeof(t) == sizeof(t[1]) && sizeof(t) < (1 << _IOC_SIZEBITS)) ? sizeof(t) : __invalid_size_argument_for_IOC) /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */ .... #define _IOWR(type,nr,size) _IOC(_IOC_READ|_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size))) | cs |
return fd;
return을 통해 Binder의 File Description을 반환해 줍니다.
'안드로이드 > 프레임워크' 카테고리의 다른 글
안드로이드 프레임워크 프로그래밍(19) [Native 단계의 ServiceManager 동작원리] (0) | 2015.04.10 |
---|---|
안드로이드 프레임워크 프로그래밍(18) [Native에서 원하는 ServiceManager 불러오기] (0) | 2015.04.02 |
안드로이드 프레임워크 프로그래밍(16) [Native 단계에서의 Parcel 전송(2)] (0) | 2015.03.31 |
안드로이드 프레임워크 프로그래밍(15) [Native 단계에서의 Parcel 전송(1)] (0) | 2015.03.30 |
안드로이드 프레임워크 프로그래밍(14) [서비스 매니저 생성 및 등록과정] (0) | 2015.03.29 |
설정
트랙백
댓글
글
안드로이드 프레임워크 프로그래밍(16) [Native 단계에서의 Parcel 전송(2)]
지난 포스팅에서 Native 단계에서 Parcel 클래스가 전송되는 과정에 대하여 다루어 보았었습니다. 이번 포스팅은 전송된 Parcel을 수신하고 해당 Parcel을 풀어보는 과정에 대해 분석해 보도록 하겠습니다.
Parcel이 Native 단계에서 전송되는 과정에 대한 자세한 사항은 이전 포스팅을 참조해 주시기 바랍니다.
지난 포스팅에서 Parcel이 전송되는 과정에 이어 Parcel이 Binder를 통해 수신되는 과정을 살펴보겠습니다.
/frameworks/native/libs/binder/IPCThreadState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { .... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { err = *static_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); } } else { freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; } | cs |
위에서 작성된 코드들 중 중요한 부분들에 대해 살펴보겠습니다.
err=talkWithDriver()
바인더 IPC 데이터가 저장된 mOut을 Binder에 전송하며 또한 수신된 데이터를 mIn에 저장하는 과정입니다.
cmd = mIn.readInt32();
수신된 Binder를 확인하는 부분입니다. min 내에 저장된 값을 불러내어 Parcel의 상태값을 얻어냅니다. 이후 switch()문을 통해 수신된 Parcel를 처리하는 과정을 거치게 됩니다.
cmd에는 바인더 드라이버로부터 온 Parcel 클래스를 읽어 오게 되며 해당 부분에는 BR_REPLY가 저장되 있습니다. switch() 문을 통해 BR_REPLY가 실행되며 binder_transaction_data의 값을 수신하게 됩니다.
reply->ipcSetDataReference()
포인터로 선언되었던 reply Parcel에 데이터를 저장하는 과정입니다. 해당 함수에 대해 자세히 들여다보도록 합니다.
/frameworks/native/libs/binder/Parcel.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) { size_t minOffset = 0; freeDataNoInit(); mError = NO_ERROR; mData = const_cast<uint8_t*>(data); mDataSize = mDataCapacity = dataSize; //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)\n", this, mDataSize, getpid()); mDataPos = 0; ALOGV("setDataReference Setting data pos of %p to %d\n", this, mDataPos); mObjects = const_cast<size_t*>(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; mOwner = relFunc; mOwnerCookie = relCookie; for (size_t i = 0; i < mObjectsSize; i++) { size_t offset = mObjects[i]; if (offset < minOffset) { ALOGE("%s: bad object offset %zu < %zu\n", __func__, offset, minOffset); mObjectsSize = 0; break; } minOffset = offset + sizeof(flat_binder_object); } scanForFds(); } | cs |
위 과정을 통해 reply Parcel의 값이 Binder에 의해 저장이 되었음을 확인하실 수 있습니다.
여기까지 실행하게 되었다면 이제 우리는 IServiceManager에서 transact() 함수를 호출했던 시점으로 다시 돌아가봅니다.
/frameworks/native/libs/binder/IServiceManager.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class BpServiceManager : public BpInterface<IServiceManager> { public: BpServiceManager(const sp<IBinder>& impl) : BpInterface<IServiceManager>(impl) { } .... virtual status_t addService(const String16& name, const sp<IBinder>& service, bool allowIsolated) { Parcel data, reply; data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); data.writeStrongBinder(service); data.writeInt32(allowIsolated ? 1 : 0); status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); return err == NO_ERROR ? reply.readExceptionCode() : err; } .... } | cs |
transact() 함수가 실행이 왼료되면 마지막으로 return 과정을 거치게 됩니다.
/frameworks/native/libs/binder/Parcel.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | int32_t Parcel::readExceptionCode() const { int32_t exception_code = readAligned<int32_t>(); if (exception_code == EX_HAS_REPLY_HEADER) { int32_t header_start = dataPosition(); int32_t header_size = readAligned<int32_t>(); // Skip over fat responses headers. Not used (or propagated) in // native code setDataPosition(header_start + header_size); // And fat response headers are currently only used when there are no // exceptions, so return no error: return 0; } return exception_code; } | cs |
이로서 addService()가 Parcel을 마침으로서 하나의 Native System Service가 등록되는 과정을 살펴보았습니다. Parcel은 안드로이드 IPC통신의 핵심인 Binder에서 필히 사용되는 부분이므로 공부하시는 분들께서는 잘 참고해주셨으면 하네요.
본 포스팅은 사실상 코드만 소개하다 보니 해당 내용이 상당히 복잡하게 보이실 겁니다. 해당 코드에 관련된 이미지 및 자세한 설명은 아래 출저의 책을 참조해주셨으면 합니다.
참고문헌 : 인사이드 안드로이드, 송형주 외 4인 저, 위키북스, 2010
'안드로이드 > 프레임워크' 카테고리의 다른 글
안드로이드 프레임워크 프로그래밍(18) [Native에서 원하는 ServiceManager 불러오기] (0) | 2015.04.02 |
---|---|
안드로이드 프레임워크 프로그래밍(17) [Binder 드라이버 호출과정] (0) | 2015.04.01 |
안드로이드 프레임워크 프로그래밍(15) [Native 단계에서의 Parcel 전송(1)] (0) | 2015.03.30 |
안드로이드 프레임워크 프로그래밍(14) [서비스 매니저 생성 및 등록과정] (0) | 2015.03.29 |
안드로이드 Native 코드 분석 : DECLARE_META_INTERFACE() (0) | 2015.03.28 |
설정
트랙백
댓글
글
안드로이드 프레임워크 프로그래밍(15) [Native 단계에서의 Parcel 전송(1)]
지난 포스팅에서 ServiceManager에 등록이 되는 과정에 대해 살펴보았습니다. 이번 포스팅에서는 프로세스간에 데이터를 전송하는 기능인 Parcel에 대해서 알아보도록 하겠습니다.
시작하기에 앞서 아래 링크를 클릭하여 Java 단계에서의 Parcel 전송에 대해 이해하신 후 본 포스팅을 보신다면 이해가 좀 더 쉬워질 것입니다.
Parcel은 안드로이드에서 사용되는 프로세스간 데이터 전송 방식으로 자신의 프로세스에서 제작된 Parcel을 상대방의 프로세스에 전송한 후 전송받은 프로세스에서 받은 Parcel을 풀어서 안에 들어있는 데이터를 사용하는 방식이라 할 수 있습니다.
A프로세스에서 Parcel을 통해 자신이 보내고자 하는 데이터를 만든 후 이를 IPC통신을 통해 B프로세스에서 Parcel 데이터를 읽을 수 있게 하고 이를 받은 B프로세서에서는 Parcel을 해체하는 작업을 거치게 됩니다. 이 때 주의할 점은 A프로세스에서 Parcel을 묶었을 때의 순서에 따라 진행해야 한다는 점입니다.
대략적인 개념은 이 정도 한 후 실제 코드를 보면서 부연 설명을 덧붙여보도록 하겠습니다.
지난 포스팅에서 우리는 ServiceManager에 등록되는 과정에서 Parcel이 사용되는 것을 보셨을 것입니다. 이제 Parcel이 해당 코드에서는 어떤 방식으로 사용되고 있는지 분석해봅니다.
/frameworks/native/libs/binder/IServiceManager.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class BpServiceManager : public BpInterface<IServiceManager> { public: BpServiceManager(const sp<IBinder>& impl) : BpInterface<IServiceManager>(impl) { } .... virtual status_t addService(const String16& name, const sp<IBinder>& service, bool allowIsolated) { Parcel data, reply; data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); data.writeStrongBinder(service); data.writeInt32(allowIsolated ? 1 : 0); status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); return err == NO_ERROR ? reply.readExceptionCode() : err; } .... } | cs |
본 코드의 addService()는 안드로이드에 사용되는 서비스를 다른 프로세스에서 사용할 수 있게 Service Manager에 등록을 하는 과정을 나타냅니다. 이 과정을 거치면 Binder를 통해 등록된 Service를 사용할 수 있게 됩니다.
위의 코드들을 대뜸 보면 아시듯이 data 라는 명의 Parcel 클래스에 write를 통하여 정보를 순서대로 집어넣고 있는 상황을 보고 계십니다. 여기서 각각의 줄마다 어떤 기능이 사용되고 있는지 확인해 보도록 합시다.
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
ServiceManager에 등록될 서비스의 RPC 헤더를 기록하는 부분입니다.
이 때 쓰이는 IServiceManager::getInterfaceDescriptor()은 해당 소스코드 내에서는 확인하기 어렵습니다. 그 이유는 IInterface.h 헤더 파일에 #define 매크로를 통해 정의되어 있기 때문인데요 이 부분에 대해서는 아래 포스팅을 참조해 주셨으면 합니다.
위에서 사용된 writeInterfaceToken() 함수는 Parcel 클래스에서 ServiceManager의 RPC 헤더를 저장하게 됩니다.
/frameworks/native/libs/binder/Parcel.cpp
1 2 3 4 5 6 7 8 | // Write RPC headers. (previously just the interface token) status_t Parcel::writeInterfaceToken(const String16& interface) { writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); // currently the interface identification token is just its name as a string return writeString16(interface); } | cs |
data.writeString16(name);
해당 Service의 이름이 이 과정을 통해 등록됩니다.
/frameworks/native/libs/binder/Parcel.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | status_t Parcel::writeString16(const String16& str) { return writeString16(str.string(), str.size()); } status_t Parcel::writeString16(const char16_t* str, size_t len) { if (str == NULL) return writeInt32(-1); status_t err = writeInt32(len); if (err == NO_ERROR) { len *= sizeof(char16_t); uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t)); if (data) { memcpy(data, str, len); *reinterpret_cast<char16_t*>(data+len) = 0; return NO_ERROR; } err = mError; } return err; } | cs |
data.writeStrongBinder(service);
Service Manager에 바인더를 등록하는 과정입니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | status_t Parcel::writeStrongBinder(const sp<IBinder>& val) { return flatten_binder(ProcessState::self(), val, this); } status_t flatten_binder(const sp<ProcessState>& proc, const sp<IBinder>& binder, Parcel* out) { flat_binder_object obj; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; if (binder != NULL) { IBinder *local = binder->localBinder(); if (!local) { BpBinder *proxy = binder->remoteBinder(); if (proxy == NULL) { ALOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.type = BINDER_TYPE_HANDLE; obj.handle = handle; obj.cookie = NULL; } else { obj.type = BINDER_TYPE_BINDER; obj.binder = local->getWeakRefs(); obj.cookie = local; } } else { obj.type = BINDER_TYPE_BINDER; obj.binder = NULL; obj.cookie = NULL; } return finish_flatten_binder(binder, obj, out); } inline static status_t finish_flatten_binder( const sp<IBinder>& binder, const flat_binder_object& flat, Parcel* out) { return out->writeObject(flat, false); } status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData) { const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; const bool enoughObjects = mObjectsSize < mObjectsCapacity; if (enoughData && enoughObjects) { restart_write: *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val; // Need to write meta-data? if (nullMetaData || val.binder != NULL) { mObjects[mObjectsSize] = mDataPos; acquire_object(ProcessState::self(), val, this); mObjectsSize++; } // remember if it's a file descriptor if (val.type == BINDER_TYPE_FD) { if (!mAllowFds) { return FDS_NOT_ALLOWED; } mHasFds = mFdsKnown = true; } return finishWrite(sizeof(flat_binder_object)); } if (!enoughData) { const status_t err = growData(sizeof(val)); if (err != NO_ERROR) return err; } if (!enoughObjects) { size_t newSize = ((mObjectsSize+2)*3)/2; size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t)); if (objects == NULL) return NO_MEMORY; mObjects = objects; mObjectsCapacity = newSize; } goto restart_write; } | cs |
data.writeInt32(allowIsolated ? 1 : 0);
allowIsolated 변수의 초기값은 False로 설정되어 있습니다.
/frameworks/native/libs/binder/Parcel.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | status_t Parcel::writeInt32(int32_t val) { return writeAligned(val); } template<class T> status_t Parcel::writeAligned(T val) { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(val)) <= mDataCapacity) { restart_write: *reinterpret_cast<T*>(mData+mDataPos) = val; return finishWrite(sizeof(val)); } status_t err = growData(sizeof(val)); if (err == NO_ERROR) goto restart_write; return err; } | cs |
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
transact() 함수를 실행함으로서 Parcel을 전송하게 됩니다. 전송보내게 될 data와 전송받게 될 reply 인 Parcel 클래스를 설정하신 후 실행하게 되면 시스템 서비스에 등록이 성공합니다.
/frameworks/native/include/binder/Binder.h
1 2 3 4 5 6 7 8 | class BpRefBase : public virtual RefBase { protected: .... inline IBinder* remote() { return mRemote; } inline IBinder* remote() const { return mRemote; } .... }; | cs |
위 과정을 통해 mRemote에 저장되어 있던 Binder가 반환됩니다.
여기서 ServiceManager는 BpBinder를 반환하게 됩니다.
해당 과정에 대해 자세히 알고 싶으신 분께서는 아래 포스팅을 참조해 주시기 바랍니다.
BpBinder 클래스에서 transact() 함수가 동작되는 과정을 살펴보도록 하겠습니다.
1 2 3 4 5 6 7 8 9 10 11 | class BpBinder : public IBinder { public: BpBinder(int32_t handle); .... virtual status_t transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0); .... } | cs |
/frameworks/native/libs/binder/BpBinder.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | BpBinder::BpBinder(int32_t handle) : mHandle(handle) , mAlive(1) , mObitsSent(0) , mObituaries(NULL) { ALOGV("Creating BpBinder %p handle %d\n", this, mHandle); extendObjectLifetime(OBJECT_LIFETIME_WEAK); IPCThreadState::self()->incWeakHandle(handle); } status_t BpBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { // Once a binder has died, it will never come back to life. if (mAlive) { status_t status = IPCThreadState::self()->transact( mHandle, code, data, reply, flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; } | cs |
위에서 보시게 되는 Parcel 클래스인 data는 정보를 받는 역할을, reply는 정보를 보내는 역할로 보시면 되겠습니다. 이 곳에서는 이번엔 IPCThreadState 클래스를 통해 Transact() 함수가 실행되고 있는 모습을 보고 계십니다. 해당 함수를 추적해 봅시다.
/frameworks/native/libs/binder/IPCThreadState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout ALOGI(">>>>>> CALLING transaction 4"); } else { ALOGI(">>>>>> CALLING transaction %d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout ALOGI("<<<<<< RETURNING transaction 4"); } else { ALOGI("<<<<<< RETURNING transaction %d", code); } #endif IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NULL, NULL); } return err; } | cs |
위 코드에서 Parcel과 연관된 기능에 대해 살펴보도록 하겠습니다.
writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
바인더를 통해 Parcel을 전송할 준비를 해주는 함수로 보시면 되겠습니다.
/frameworks/native/libs/binder/IPCThreadState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; tr.cookie = 0; tr.sender_pid = 0; tr.sender_euid = 0; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = statusBuffer; tr.offsets_size = 0; tr.data.ptr.offsets = NULL; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; } | cs |
위의 코드에서 보시는 대로 본 함수에 전달된 인자값의 내용들이 binder_transaction_data 구조체 안에 저장되는 모습을 보실 수 있습니다.
30번째 줄에 등장하는 mOut은 Parcel 클래스로 해당 클래스는 송신 용도로 쓰이는 Parcel 클래스로 이와 반대 역할을 하는 수신 용도로 쓰이는 Parcel 클래스인 mIn 클래스가 존재합니다.
/frameworks/native/include/binder/IPCThreadState.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | class IPCThreadState { public: static IPCThreadState* self(); static IPCThreadState* selfOrNull(); // self(), but won't instantiate .... private: IPCThreadState(); ~IPCThreadState(); .... Parcel mIn; Parcel mOut; status_t mLastError; pid_t mCallingPid; uid_t mCallingUid; int32_t mStrictModePolicy; int32_t mLastTransactionBinderFlags; .... }; | cs |
waitForResponse(NULL, NULL);
본 함수가 실행됨으로서 바인더를 통해 Parcel이 전송됩니다!
/frameworks/native/libs/binder/IPCThreadState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_FAILED_REPLY: err = FAILED_TRANSACTION; goto finish; case BR_ACQUIRE_RESULT: { ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { err = *static_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); } } else { freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; } | cs |
이번 코드는 전체적인 맥락에서 상당히 중요하다 판단하여 모두 기재해 보았습니다. 해당 함수에서 중요한 부분에 대해 자세히 설명해 드리도록 하겠습니다.
err=talkWithDriver()
바인더 IPC 데이터가 저장된 mOut을 Binder에 전송하며 또한 수신된 데이터를 mIn에 저장하는 과정입니다.
아래는 talkWithDriver() 함수가 구현된 모습입니다. 상당히 복잡하게 구성되어 있으므로 전체적인 기능만 보시고 넘어가시면 되겠습니다.
/frameworks/native/libs/binder/IPCThreadState.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | status_t IPCThreadState::talkWithDriver(bool doReceive) { if (mProcess->mDriverFD <= 0) { return -EBADF; } binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (long unsigned int)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (long unsigned int)mIn.data(); } else { bwr.read_size = 0; bwr.read_buffer = 0; } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); if (outAvail != 0) { alog << "Sending commands to driver: " << indent; const void* cmds = (const void*)bwr.write_buffer; const void* end = ((const uint8_t*)cmds)+bwr.write_size; alog << HexDump(cmds, bwr.write_size) << endl; while (cmds < end) cmds = printCommand(alog, cmds); alog << dedent; } alog << "Size of receive buffer: " << bwr.read_size << ", needRead: " << needRead << ", doReceive: " << doReceive << endl; } // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { IF_LOG_COMMANDS() { alog << "About to read/write, write size = " << mOut.dataSize() << endl; } #if defined(HAVE_ANDROID_OS) if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif if (mProcess->mDriverFD <= 0) { err = -EBADF; } IF_LOG_COMMANDS() { alog << "Finished read/write, write size = " << mOut.dataSize() << endl; } } while (err == -EINTR); IF_LOG_COMMANDS() { alog << "Our err: " << (void*)err << ", write consumed: " << bwr.write_consumed << " (of " << mOut.dataSize() << "), read consumed: " << bwr.read_consumed << endl; } if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); alog << "Remaining data size: " << mOut.dataSize() << endl; alog << "Received commands from driver: " << indent; const void* cmds = mIn.data(); const void* end = mIn.data() + mIn.dataSize(); alog << HexDump(cmds, mIn.dataSize()) << endl; while (cmds < end) cmds = printReturnCommand(alog, cmds); alog << dedent; } return NO_ERROR; } return err; } | cs |
cmd = mIn.readInt32();
수신된 Binder를 확인하는 부분입니다. min 내에 저장된 값을 불러내어 Parcel의 상태값을 얻어냅니다. 이후 switch()문을 통해 수신된 Parcel를 처리하는 과정을 거치게 됩니다.
=====
이번 포스팅을 작성하다보니 내용이 상당히 길어져 버렸군요. 수신 과정만 분석하는데만 무려 1주일이라는 시간이 지나버렸군요. 사실 이 부분까지 접근을 하다보면 필연적으로 안드로이드 내의 linux 커널 부분까지 접근하게 되는데요 커널을 다루는 것은 본 포스팅에서 다루지 않도록 하겠습니다. 안드로이드 커널과 관련된 부분은 전문 서적등을 통해 정보를 얻으시면 좀 더 정확하고 빠른 이해가 가능하실 것이라 생각합니다.
다음포스팅에서는 전송된 Parcel을 수신한 후 처리하는 과정에 대해 알아보도록 하겠습니다.
'안드로이드 > 프레임워크' 카테고리의 다른 글
안드로이드 프레임워크 프로그래밍(17) [Binder 드라이버 호출과정] (0) | 2015.04.01 |
---|---|
안드로이드 프레임워크 프로그래밍(16) [Native 단계에서의 Parcel 전송(2)] (0) | 2015.03.31 |
안드로이드 프레임워크 프로그래밍(14) [서비스 매니저 생성 및 등록과정] (0) | 2015.03.29 |
안드로이드 Native 코드 분석 : DECLARE_META_INTERFACE() (0) | 2015.03.28 |
안드로이드 Native 코드 분석 : IMPLEMENT_META_INTERFACE() (0) | 2015.03.27 |