검색결과 리스트
글
[C/C++] typedef 함수 포인터 구현원리
최근 안드로이드 프레임워크를 공부하다보니 JAVA는 물론 JNI를 통해 연결되는 C/C++ 코드들에 대해 빠삭하게 공부를 하고 있습니다. 정말이지 흔히 쓰는 저 언어들에 슬슬 도가 트고 있지 않은가 싶을정도로 자신의 실력에 대해 자만심이 들기도 할 정도입니다.
소스코드들을 공부하는 과정에서 어려운 부분이 있다면 바로 흔히 사용하지 않는 방식으로 구현된 소스코드를 해석하는 때라고 생각합니다. 특히 수업시간에는 이론만 알고 넘어가는 함수 포인터라는 생소한 개념이 쓰였을 때는 처음엔 이것의 정체 조차 모르는 경우도 허다하지요.
본론으로 들어가기에 앞서 간단한 소스코드를 통하여 함수 포인터에 대한 기념을 알아보도록 하겠습니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | #include<stdio.h> void (*ptrfunc)(int); void testprint(int n){ printf("Number : %d\n", n); } int main(){ testprint(100); ptrfunc = testprint; ptrfunc(77); return 0; } | cs |
위의 결과 출력을 보시면 대략적인 함수 포인터의 동작 원리를 이해하실 수 있을 것이라 생각합니다.
여기서 잠시 코드를 좀 더 자세히 설명 드리도록 하겠습니다.
void (*ptrfunc)(int);
함수 포인터는 위에서 보시는 바와 같은 구조로 이루어져 있습니다. 각 부분의 기능은 다음과 같습니다.
return값의 자료형 (*포인터 함수의 이름) (인자값)
함수 포인터를 사용하실 때 주의하실 점은 함수 포인터가 이용하고자 하는 함수의 return값의 자료형과 인자값의 자료형 및 갯수가 일치해야 사용할 수 있다는 점입니다. 다음 코드를 확인해 봅시다.
ptrfunc = testprint;
함수 포인터에 사용하고자 하는 함수의 이름을 입력합니다. 위 과정을 통해 기존 포인터와 같이 함수의 주소값이 포인터에 저장됨으로서 해당 함수 포인터는 자신이 가지고 있는 주소값의 함수와 같은 기능을 구현하게 됩니다.
다음으로 typedef가 사용된 함수 포인터에 대해 살펴보도록 합시다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #include<stdio.h> typedef void (*ptrfunc)(int); void testprint(int n){ printf("Number : %d\n", n); } int main(){ testprint(100); ptrfunc elecs; elecs = testprint; elecs(77); return 0; } | cs |
위에서 설명하였던 소스코드에 typedef를 적용하여 보았습니다. typedef문이 이곳에서는 어떻게 적용되고 있는지 살펴보도록 합시다.
보시는 대로 기존에 있던 함수 포인터가 선언된 부분 앞쪽에 typedef가 선언되어 있는 모습을 보고 계십니다. typedef문은 빈번하게 사용되는 소스코드가 복잡하거나 길 경우 이를 간결하게 사용하기 위한 목적으로 사용되는데요 함수 포인터에서의 typedef문은 지금껏 보았던 typedef문과는 약간 사용되는 방법이 다르지만 결국은 사용되는 목적은 같습니다.
다음으로 typedef 함수 포인터가 응용되는 부분을 보여드리도록 하겠습니다.
ptrfunc elecs;
응용이라고 말씀드려서 뭔가 거창한 걸 하려나 하겠습니다만 사실 typedef로 선언된 함수 포인터는 위에서 보시는 바와 같이 매우 간결하게 쓰이고 있음을 아실 수 있습니다. ptrfunc로 정의된 typedef문의 함수 포인터를 elecs라는 이름의 함수 포인터 하나를 만들었다고 보시면 됩니다. 쉽게 설명해서 함수포인터인 변수 하나가 생겼다고 생각하시면 됩니다. 아직도 이해가 안되신다면 아래의 간단한 소스코드를 보시면 아하! 하고 이해하실 겁니다.
int elecs;
elecs = 199;
이제 감이 오시는지요? 그렇습니다! typedef문으로 선언된 함수 포인터는 마치 자료형을 선언하는 것과 같이 간단하게 함수 포인터 변수를 선언한다고 생각하시면 되는 것입니다! 혹시나 해서 아직도 이해하지 못하신 분들을 위해 저 위에 typedef 함수 포인터가 실제로는 어떻게 구현되어 있는지 보여드리겠습니다.
void (*elecs)(int);
위에서 보시는 바와 같이 ptrfunc 부분이 elecs로 치환된 것이라고 생각하시면 제 설명을 정확히 이해하시는 것입니다!
혹시 typedef 함수 포인터의 원리에 대해 알고자 하셔서 오신 분들이라면 포스팅을 여기까지만 읽어주셔도 자신의 실력으로 함수 포인터를 활용하실 수 있으리라 생각합니다. 아래에서 부터는 다소 어려우니 기죽지 마시고 이렇게 활용되고 있구나 하는 생각으로 읽어주셨으면 합니다.
그렇다면 이제 실전에서 사용되고 있는 코드를 보도록 하겠습니다. 아래의 소스코드는 안드로이드 내에서 구현된 함수 포인터 입니다. 언어는 C++로 구성되어 있습니다만 함수포인터를 설멍하는데 큰 어려움은 없을 것입니다. 소스는 다음과 같습니다.
/frameworks/av/camera/CameraBase.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | template <typename TCam, typename TCamTraits> sp<TCam> CameraBase<TCam, TCamTraits>::connect(int cameraId, const String16& clientPackageName, int clientUid) { ALOGV("%s: connect", __FUNCTION__); sp<TCam> c = new TCam(cameraId); sp<TCamCallbacks> cl = c; status_t status = NO_ERROR; const sp<ICameraService>& cs = getCameraService(); if (cs != 0) { TCamConnectService fnConnectService = TCamTraits::fnConnectService; status = (cs.get()->*fnConnectService)(cl, cameraId, clientPackageName, clientUid, /*out*/ c->mCamera); } if (status == OK && c->mCamera != 0) { c->mCamera->asBinder()->linkToDeath(c); c->mStatus = NO_ERROR; } else { ALOGW("An error occurred while connecting to camera: %d", cameraId); c.clear(); } return c; } | cs |
여기서 참으로 특이한 구조의 소스코드를 만나게 되었습니다.
TCamConnectService fnConnectService = TCamTraits::fnConnectService;
이제 이 부분이 어떻게 구현되었는지 자세히 보도록 합시다.
/frameworks/av/include/camera/CameraBase.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | template <typename TCam> struct CameraTraits { }; template <typename TCam, typename TCamTraits = CameraTraits<TCam> > class CameraBase : public IBinder::DeathRecipient { public: typedef typename TCamTraits::TCamListener TCamListener; typedef typename TCamTraits::TCamUser TCamUser; typedef typename TCamTraits::TCamCallbacks TCamCallbacks; typedef typename TCamTraits::TCamConnectService TCamConnectService; .... } | cs |
위 코드를 통하여 다음과 같은 사실을 알아내었습니다.
TCamConnectService로 정의된 부분이 CameraTraits<TCam>::TCamConnectService와 동일하다는 것을 알고 다음으로 CameraTraits에 대해 확인해 보도록 하겠습니다.
/frameworks/av/include/camera/Camera.h
1 2 3 4 5 6 7 8 9 10 11 12 | template <> struct CameraTraits<Camera> { typedef CameraListener TCamListener; typedef ICamera TCamUser; typedef ICameraClient TCamCallbacks; typedef status_t (ICameraService::*TCamConnectService)(const sp<ICameraClient>&, int, const String16&, int, /*out*/ sp<ICamera>&); static TCamConnectService fnConnectService; }; | cs |
위 코드에서 정말 요상하게 친구가 하나 보이는군요.
typedef status_t (ICameraService::*TCamConnectService)(const sp<ICameraClient>&,
위에서 배운 바와 같이 해당 코드는 typedef 함수 포인터입니다. 다만 포인터 함수의 이름이 참으로 독특한데 이는 멤버 포인터라는 C++에서 사용되고 있는 기능입니다. 멤버 포인터에 대해 좀 더 자세히 알고 싶으신 분은 아래 포스팅을 참조해 주시기 바랍니다.
http://showmiso.tistory.com/210
바로 그 아래에는 typedef로 선언된 함수 포인터에 대한 변수를 static으로 선언되었음을 확인하실 수 있습니다.
이제 여기서 다시 앞에서 확인하였던 선언문을 다시 한 번 보도록 합니다.
위 소스코드는 TCamConnectService로 선언된 typedef 함수 포인터를 가진 변수명 fnConnectService 안에 TCamTratis::fnConnectService 함수의 주소값을 넣겠다는 의미로 이해해 주시면 되겠습니다. 그렇다면 여기서 TCamTratis::fnConnectService 함수는 어떻게 구현되었는지 찾아보도록 하겠습니다.
/frameworks/av/camera/Camera.cpp
1 2 | CameraTraits<Camera>::TCamConnectService CameraTraits<Camera>::fnConnectService = &ICameraService::connect; | cs |
Camera.cpp 소스 코드 내에서 'CameraTraits<Camera>::fnConnectService' 라는 이름의 포인터 함수 변수가 선언되었고 해당 포인터 함수에 ICameraService::connect 함수의 주소를 넣어준다고 이해하시면 되겠습니다.
/frameworks/av/include/camera/ICameraService.h
1 2 3 4 5 6 7 8 9 10 11 12 | class ICameraService : public IInterface { public: .... virtual status_t connect(const sp<ICameraClient>& cameraClient, int cameraId, const String16& clientPackageName, int clientUid, /*out*/ sp<ICamera>& device) = 0; .... } | cs |
/frameworks/av/camera/ICameraService.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | class BpCameraService: public BpInterface<ICameraService> { public: BpCameraService(const sp<IBinder>& impl) : BpInterface<ICameraService>(impl) { } .... // connect to camera service (android.hardware.Camera) virtual status_t connect(const sp<ICameraClient>& cameraClient, int cameraId, const String16 &clientPackageName, int clientUid, /*out*/ sp<ICamera>& device) { Parcel data, reply; data.writeInterfaceToken(ICameraService::getInterfaceDescriptor()); data.writeStrongBinder(cameraClient->asBinder()); data.writeInt32(cameraId); data.writeString16(clientPackageName); data.writeInt32(clientUid); remote()->transact(BnCameraService::CONNECT, data, &reply); if (readExceptionCode(reply)) return -EPROTO; status_t status = reply.readInt32(); if (reply.readInt32() != 0) { device = interface_cast<ICamera>(reply.readStrongBinder()); } return status; } .... } | cs |
드디어 우리는 connect 함수를 찾아내는 데 성공하였습니다. 이로서 함수 포인터가 정의 되는 과정을 모두 살펴보았습니다. 마지막으로 이 기나긴 여정을 코드로 간결하게 요약하자면 다음과 같습니다.
TCamConnectService fnConnectService = TCamTraits::fnConnectService;
위 코드는 아래와 같이 변동이 됨을 확인하실 수 있습니다.
status_t (ICameraService::*TCamConnectService)(const sp<ICameraClient>&,
TCamConnectService = &ICameraService::connect;
위의 코드를 처음 보시는 분들은 이 시점에서도 모두 이해가 안 되실 수 있습니다. 하지만 위 코드에서 일정 부분 만이라도 이해하셨다면 여러분들은 성공하신 겁니다!
'프로그래밍 팁' 카테고리의 다른 글
[C/C++]thread 조건변수 다루기 - pthread_cond_broadcast() (0) | 2015.09.01 |
---|---|
[JAVA]JDWP(Java™ Debug Wire Protocol) (0) | 2015.08.21 |
[Java] Error 혹은 Debug시 등장하는 method인 access$000 (0) | 2015.08.20 |
[JAVA]윈도 CMD를 통해 자바 Command Line 명령어 활용하기 (0) | 2014.10.04 |
[JAVA] 간단한 파일 입출력(FILE I/O) 구현 (0) | 2014.09.10 |