Android에서 VSync 동작 원리 및 초기화 과정(1)
안드로이드 기반 디바이스에서 화면의 출력되는 정보가 변경될 경우 이를 지속적으로 갱신해 줄 필요가 있습니다. 안드로이드에서 이 기능을 수행하는 것으로 VSync가 있습니다. VSync란 안드로이드 기기에 표출되는 화면의 정보가 변경되었을 때 이를 호출하는 신호로 이는 Choreographer 클래스에서 정의하고 있습니다. 자세한 설명은 아래 그림을 통해 해 보도록 하겠습니다.
VSync는 주기적으로 신호를 발생하여 디스플레이의 화면을 갱신시키는 함수를 호출합니다. 하드웨어의 설정대로 VSync의 발생 주기는 60Hz입니다. VSync는 HWComposer에서 설정되며 설정 과정을 소스코드를 통해 분석해 보도록 합니다. HWComposer는 SurfaceFlinger가 초기화될 때 동시에 진행됩니다. SurfaceFlinger가 생성되는 과정에 대해서는 아래 링크를 참조해 주시기 바랍니다.
/frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | .... void SurfaceFlinger::init() { ALOGI( "SurfaceFlinger's main thread ready to run. " "Initializing graphics H/W..."); status_t err; Mutex::Autolock _l(mStateLock); .... // Initialize the H/W composer object. There may or may not be an // actual hardware composer underneath. mHwc = new HWComposer(this, *static_cast<HWComposer::EventHandler *>(this)); // First try to get an ES2 config err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(), EGL_OPENGL_ES2_BIT, &mEGLConfig); if (err != NO_ERROR) { // If ES2 fails, try ES1 err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(), EGL_OPENGL_ES_BIT, &mEGLConfig); } if (err != NO_ERROR) { // still didn't work, probably because we're on the emulator... // try a simplified query ALOGW("no suitable EGLConfig found, trying a simpler query"); err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(), 0, &mEGLConfig); } if (err != NO_ERROR) { // this EGL is too lame for android LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); } .... // initialize our non-virtual displays for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) { DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i); // set-up the displays that are already connected if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) { // All non-virtual displays are currently considered secure. bool isSecure = true; createBuiltinDisplayLocked(type); wp<IBinder> token = mBuiltinDisplays[i]; sp<BufferQueue> bq = new BufferQueue(new GraphicBufferAlloc()); sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i, bq); sp<DisplayDevice> hw = new DisplayDevice(this, type, allocateHwcDisplayId(type), isSecure, token, fbs, bq, mEGLConfig); if (i > DisplayDevice::DISPLAY_PRIMARY) { // FIXME: currently we don't get blank/unblank requests // for displays other than the main display, so we always // assume a connected display is unblanked. ALOGD("marking display %d as acquired/unblanked", i); hw->acquireScreen(); } mDisplays.add(token, hw); } } // make the GLContext current so that we can create textures when creating Layers // (which may happens before we render something) getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext); // start the EventThread sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync, vsyncPhaseOffsetNs, true); mEventThread = new EventThread(vsyncSrc); sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync, sfVsyncPhaseOffsetNs, false); mSFEventThread = new EventThread(sfVsyncSrc); mEventQueue.setEventThread(mSFEventThread); mEventControlThread = new EventControlThread(this); mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY); // set a fake vsync period if there is no HWComposer if (mHwc->initCheck() != NO_ERROR) { mPrimaryDispSync.setPeriod(16666667); } // initialize our drawing state mDrawingState = mCurrentState; // set initial conditions (e.g. unblank default device) initializeDisplays(); // start boot animation startBootAnim(); } .... | cs |
위의 소스코드에서 보시는 바와 같이 HWComposer가 새롭게 생성되고 있는 것을 확인하실 수 있습니다. 이번에는 HWCompose가 생성되는 과정을 보도록 하겠습니다.
/frameworks/native/services/surfaceflinger/DisplayHardware/HWComposer.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class HWComposer { .... sp<SurfaceFlinger> mFlinger; framebuffer_device_t* mFbDev; struct hwc_composer_device_1* mHwc; // invariant: mLists[0] != NULL iff mHwc != NULL // mLists[i>0] can be NULL. that display is to be ignored struct hwc_display_contents_1* mLists[MAX_HWC_DISPLAYS]; DisplayData mDisplayData[MAX_HWC_DISPLAYS]; size_t mNumDisplays; cb_context* mCBContext; EventHandler& mEventHandler; size_t mVSyncCounts[HWC_NUM_PHYSICAL_DISPLAY_TYPES]; sp<VSyncThread> mVSyncThread; bool mDebugForceFakeVSync; BitSet32 mAllocatedDisplayIDs; .... } | cs |
/frameworks/native/services/surfaceflinger/DisplayHardware/HWComposer.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | .... HWComposer::HWComposer( const sp<SurfaceFlinger>& flinger, EventHandler& handler) : mFlinger(flinger), mFbDev(0), mHwc(0), mNumDisplays(1), mCBContext(new cb_context), mEventHandler(handler), mDebugForceFakeVSync(false) { .... // Note: some devices may insist that the FB HAL be opened before HWC. int fberr = loadFbHalModule(); loadHwcModule(); if (mFbDev && mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // close FB HAL if we don't needed it. // FIXME: this is temporary until we're not forced to open FB HAL // before HWC. framebuffer_close(mFbDev); mFbDev = NULL; } // If we have no HWC, or a pre-1.1 HWC, an FB dev is mandatory. if ((!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) && !mFbDev) { ALOGE("ERROR: failed to open framebuffer (%s), aborting", strerror(-fberr)); abort(); } // these display IDs are always reserved for (size_t i=0 ; i<NUM_BUILTIN_DISPLAYS ; i++) { mAllocatedDisplayIDs.markBit(i); } if (mHwc) { ALOGI("Using %s version %u.%u", HWC_HARDWARE_COMPOSER, (hwcApiVersion(mHwc) >> 24) & 0xff, (hwcApiVersion(mHwc) >> 16) & 0xff); if (mHwc->registerProcs) { mCBContext->hwc = this; mCBContext->procs.invalidate = &hook_invalidate; mCBContext->procs.vsync = &hook_vsync; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) mCBContext->procs.hotplug = &hook_hotplug; else mCBContext->procs.hotplug = NULL; memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero)); mHwc->registerProcs(mHwc, &mCBContext->procs); } // don't need a vsync thread if we have a hardware composer needVSyncThread = false; // always turn vsync off when we start eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0); // the number of displays we actually have depends on the // hw composer version if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { // 1.3 adds support for virtual displays mNumDisplays = MAX_HWC_DISPLAYS; } else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // 1.1 adds support for multiple displays mNumDisplays = NUM_BUILTIN_DISPLAYS; } else { mNumDisplays = 1; } } if (mFbDev) { ALOG_ASSERT(!(mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)), "should only have fbdev if no hwc or hwc is 1.0"); DisplayData& disp(mDisplayData[HWC_DISPLAY_PRIMARY]); disp.connected = true; disp.width = mFbDev->width; disp.height = mFbDev->height; disp.format = mFbDev->format; disp.xdpi = mFbDev->xdpi; disp.ydpi = mFbDev->ydpi; if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / mFbDev->fps); ALOGW("getting VSYNC period from fb HAL: %lld", disp.refresh); } if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / 60.0); ALOGW("getting VSYNC period from thin air: %lld", mDisplayData[HWC_DISPLAY_PRIMARY].refresh); } } else if (mHwc) { // here we're guaranteed to have at least HWC 1.1 for (size_t i =0 ; i<NUM_BUILTIN_DISPLAYS ; i++) { queryDisplayProperties(i); } } if (needVSyncThread) { // we don't have VSYNC support, we need to fake it mVSyncThread = new VSyncThread(*this); } } .... | cs |
HWComposer가 생성될 때 실행되는 loadHwcModule() 함수를 살펴보도록 합니다. 먼저 해당 함수를 이해하기 위해 해당 함수에서 사용하는 헤더파일의 내용 중 일부를 살펴보겠습니다.
/hardware/libhardware/include/hardware/hardware.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | .... /** * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM * and the fields of this data structure must begin with hw_module_t * followed by module specific information. */ typedef struct hw_module_t { /** tag must be initialized to HARDWARE_MODULE_TAG */ uint32_t tag; /** * The API version of the implemented module. The module owner is * responsible for updating the version when a module interface has * changed. * * The derived modules such as gralloc and audio own and manage this field. * The module user must interpret the version field to decide whether or * not to inter-operate with the supplied module implementation. * For example, SurfaceFlinger is responsible for making sure that * it knows how to manage different versions of the gralloc-module API, * and AudioFlinger must know how to do the same for audio-module API. * * The module API version should include a major and a minor component. * For example, version 1.0 could be represented as 0x0100. This format * implies that versions 0x0100-0x01ff are all API-compatible. * * In the future, libhardware will expose a hw_get_module_version() * (or equivalent) function that will take minimum/maximum supported * versions as arguments and would be able to reject modules with * versions outside of the supplied range. */ uint16_t module_api_version; #define version_major module_api_version /** * version_major/version_minor defines are supplied here for temporary * source code compatibility. They will be removed in the next version. * ALL clients must convert to the new version format. */ /** * The API version of the HAL module interface. This is meant to * version the hw_module_t, hw_module_methods_t, and hw_device_t * structures and definitions. * * The HAL interface owns this field. Module users/implementations * must NOT rely on this value for version information. * * Presently, 0 is the only valid value. */ uint16_t hal_api_version; #define version_minor hal_api_version /** Identifier of module */ const char *id; /** Name of this module */ const char *name; /** Author/owner/implementor of the module */ const char *author; /** Modules methods */ struct hw_module_methods_t* methods; /** module's dso */ void* dso; /** padding to 128 bytes, reserved for future use */ uint32_t reserved[32-7]; } hw_module_t; typedef struct hw_module_methods_t { /** Open a specific device */ int (*open)(const struct hw_module_t* module, const char* id, struct hw_device_t** device); } hw_module_methods_t; /** * Every device data structure must begin with hw_device_t * followed by module specific public methods and attributes. */ typedef struct hw_device_t { /** tag must be initialized to HARDWARE_DEVICE_TAG */ uint32_t tag; /** * Version of the module-specific device API. This value is used by * the derived-module user to manage different device implementations. * * The module user is responsible for checking the module_api_version * and device version fields to ensure that the user is capable of * communicating with the specific module implementation. * * One module can support multiple devices with different versions. This * can be useful when a device interface changes in an incompatible way * but it is still necessary to support older implementations at the same * time. One such example is the Camera 2.0 API. * * This field is interpreted by the module user and is ignored by the * HAL interface itself. */ uint32_t version; /** reference to the module this device belongs to */ struct hw_module_t* module; /** padding reserved for future use */ uint32_t reserved[12]; /** Close this device */ int (*close)(struct hw_device_t* device); } hw_device_t; .... | cs |
/frameworks/native/services/surfaceflinger/DisplayHardware/HWComposer.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | .... // Load and prepare the hardware composer module. Sets mHwc. void HWComposer::loadHwcModule() { hw_module_t const* module; //Hardware로부터 module을 받아옵니다. if (hw_get_module(HWC_HARDWARE_MODULE_ID, &module) != 0) { ALOGE("%s module not found", HWC_HARDWARE_MODULE_ID); return; } //위의 과정으로 부터 얻어온 module을 통해 HWComposer에 적용합니다. int err = hwc_open_1(module, &mHwc); if (err) { ALOGE("%s device failed to initialize (%s)", HWC_HARDWARE_COMPOSER, strerror(-err)); return; } if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_0) || hwcHeaderVersion(mHwc) < MIN_HWC_HEADER_VERSION || hwcHeaderVersion(mHwc) > HWC_HEADER_VERSION) { ALOGE("%s device version %#x unsupported, will not be used", HWC_HARDWARE_COMPOSER, mHwc->common.version); hwc_close_1(mHwc); mHwc = NULL; return; } } .... | cs |
hw_get_module을 통해 하드웨어의 모듈 정보를 받아옵니다. hw_get_module의 함수는 아래와 같이 구성되어 있습니다.
/hardware/libhardware/hardware.c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | .... int hw_get_module_by_class(const char *class_id, const char *inst, const struct hw_module_t **module) { int status; int i; const struct hw_module_t *hmi = NULL; char prop[PATH_MAX]; char path[PATH_MAX]; char name[PATH_MAX]; if (inst) snprintf(name, PATH_MAX, "%s.%s", class_id, inst); else strlcpy(name, class_id, PATH_MAX); /* * Here we rely on the fact that calling dlopen multiple times on * the same .so will simply increment a refcount (and not load * a new copy of the library). * We also assume that dlopen() is thread-safe. */ /* Loop through the configuration variants looking for a module */ for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) { if (i < HAL_VARIANT_KEYS_COUNT) { if (property_get(variant_keys[i], prop, NULL) == 0) { continue; } snprintf(path, sizeof(path), "%s/%s.%s.so", HAL_LIBRARY_PATH2, name, prop); if (access(path, R_OK) == 0) break; snprintf(path, sizeof(path), "%s/%s.%s.so", HAL_LIBRARY_PATH1, name, prop); if (access(path, R_OK) == 0) break; } else { snprintf(path, sizeof(path), "%s/%s.default.so", HAL_LIBRARY_PATH2, name); if (access(path, R_OK) == 0) break; snprintf(path, sizeof(path), "%s/%s.default.so", HAL_LIBRARY_PATH1, name); if (access(path, R_OK) == 0) break; } } status = -ENOENT; if (i < HAL_VARIANT_KEYS_COUNT+1) { /* load the module, if this fails, we're doomed, and we should not try * to load a different variant. */ status = load(class_id, path, module); } return status; } int hw_get_module(const char *id, const struct hw_module_t **module) { return hw_get_module_by_class(id, NULL, module); } | cs |
hw_get_modlue() 함수는 이어서 hw_get_module_by_class()함수를 호출하게 되며 load()함수가 호출되면서 module 변수의 값을 설정하게 됩니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | /** * Load the file defined by the variant and if successful * return the dlopen handle and the hmi. * @return 0 = success, !0 = failure. */ static int load(const char *id, const char *path, const struct hw_module_t **pHmi) { int status; void *handle; struct hw_module_t *hmi; /* * load the symbols resolving undefined symbols before * dlopen returns. Since RTLD_GLOBAL is not or'd in with * RTLD_NOW the external symbols will not be global */ handle = dlopen(path, RTLD_NOW); if (handle == NULL) { char const *err_str = dlerror(); ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown"); status = -EINVAL; goto done; } /* Get the address of the struct hal_module_info. */ const char *sym = HAL_MODULE_INFO_SYM_AS_STR; hmi = (struct hw_module_t *)dlsym(handle, sym); if (hmi == NULL) { ALOGE("load: couldn't find symbol %s", sym); status = -EINVAL; goto done; } /* Check that the id matches */ if (strcmp(id, hmi->id) != 0) { ALOGE("load: id=%s != hmi->id=%s", id, hmi->id); status = -EINVAL; goto done; } hmi->dso = handle; /* success */ status = 0; done: if (status != 0) { hmi = NULL; if (handle != NULL) { dlclose(handle); handle = NULL; } } else { ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p", id, path, *pHmi, handle); } *pHmi = hmi; return status; } | cs |
위 과정을 통해 pHmi가 설정되는 것을 보실 수 있습니다.이 때 dlsym()함수는 동적 적제 라이브러리로 해당 기기의 Library와 연결되게 됩니다.
다음으로 hwc_open_1() 함수와 hwc_close_1() 함수를 살펴보도록 하겠습니다.
/hardware/libhardware/include/hardware/hwcomposer.h
1 2 3 4 5 6 7 8 9 10 11 12 13 | .... /** convenience API for opening and closing a device */ static inline int hwc_open_1(const struct hw_module_t* module, hwc_composer_device_1_t** device) { return module->methods->open(module, HWC_HARDWARE_COMPOSER, (struct hw_device_t**)device); } static inline int hwc_close_1(hwc_composer_device_1_t* device) { return device->common.close(&device->common); } .... | cs |
hwc_open_1() 함수는 위의 과정에서 동적 라이브러리와 연결되어 있는 method 내의 open()함수를 통해 hwc_device_open()함수를 호출하게 됩니다.
/hardware/qcom/display/msm8960/libhwcomposer/hwc.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | static int hwc_device_open(const struct hw_module_t* module, const char* name, struct hw_device_t** device) { int status = -EINVAL; if (!strcmp(name, HWC_HARDWARE_COMPOSER)) { struct hwc_context_t *dev; dev = (hwc_context_t*)malloc(sizeof(*dev)); memset(dev, 0, sizeof(*dev)); //Initialize hwc context initContext(dev); //Setup HWC methods dev->device.common.tag = HARDWARE_DEVICE_TAG; dev->device.common.version = HWC_DEVICE_API_VERSION_1_2; dev->device.common.module = const_cast<hw_module_t*>(module); dev->device.common.close = hwc_device_close; dev->device.prepare = hwc_prepare; dev->device.set = hwc_set; dev->device.eventControl = hwc_eventControl; dev->device.blank = hwc_blank; dev->device.query = hwc_query; dev->device.registerProcs = hwc_registerProcs; dev->device.dump = hwc_dump; dev->device.getDisplayConfigs = hwc_getDisplayConfigs; dev->device.getDisplayAttributes = hwc_getDisplayAttributes; *device = &dev->device.common; status = 0; } return status; } | cs |
위의 과정을 mhwc이 모두 정의되면 되면 다음으로 callback으로 각 함수들이 적용됩니다.
/frameworks/native/services/surfaceflinger/DisplayHardware/HWComposer.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | .... struct HWComposer::cb_context { struct callbacks : public hwc_procs_t { // these are here to facilitate the transition when adding // new callbacks (an implementation can check for NULL before // calling a new callback). void (*zero[4])(void); }; callbacks procs; HWComposer* hwc; }; .... if (mHwc) { ALOGI("Using %s version %u.%u", HWC_HARDWARE_COMPOSER, (hwcApiVersion(mHwc) >> 24) & 0xff, (hwcApiVersion(mHwc) >> 16) & 0xff); if (mHwc->registerProcs) { mCBContext->hwc = this; mCBContext->procs.invalidate = &hook_invalidate; mCBContext->procs.vsync = &hook_vsync; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) mCBContext->procs.hotplug = &hook_hotplug; else mCBContext->procs.hotplug = NULL; memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero)); mHwc->registerProcs(mHwc, &mCBContext->procs); } // don't need a vsync thread if we have a hardware composer needVSyncThread = false; // always turn vsync off when we start eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0); // the number of displays we actually have depends on the // hw composer version if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { // 1.3 adds support for virtual displays mNumDisplays = MAX_HWC_DISPLAYS; } else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // 1.1 adds support for multiple displays mNumDisplays = NUM_BUILTIN_DISPLAYS; } else { mNumDisplays = 1; } } .... | cs |
위에서 보시는 바와 같이 Callback 함수로 vsync 함수가 등록되어 지는 것을 확인하실 수 있습니다. 설정이 완료된 후 registerProcs()함수가 실행되여 Callback 함수를 등록하게 됩니다. 이는 이전에 hwc_device_open()함수에서 등록되어 있는 것이 실행됩니다.
/hardware/qcom/display/msm8960/libhwcomposer/hwc.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* * Save callback functions registered to HWC */ static void hwc_registerProcs(struct hwc_composer_device_1* dev, hwc_procs_t const* procs) { ALOGI("%s", __FUNCTION__); hwc_context_t* ctx = (hwc_context_t*)(dev); if(!ctx) { ALOGE("%s: Invalid context", __FUNCTION__); return; } ctx->proc = procs; // Now that we have the functions needed, kick off // the uevent & vsync threads init_uevent_thread(ctx); init_vsync_thread(ctx); } | cs |
위 hwc_registerProcs() 함수가 호출되면서 init_vsync_thread()를 호출함으로서 vsync thread가 만들어집니다.
/hardware/qcom/display/msm8960/libhwcomposer/hwc_vsync.cpp
1 2 3 4 5 6 7 8 9 10 11 | void init_vsync_thread(hwc_context_t* ctx) { int ret; pthread_t vsync_thread; ALOGI("Initializing VSYNC Thread"); ret = pthread_create(&vsync_thread, NULL, vsync_loop, (void*) ctx); if (ret) { ALOGE("%s: failed to create %s: %s", __FUNCTION__, HWC_VSYNC_THREAD_NAME, strerror(ret)); } } | cs |
위의 과정을 통해 VSync를 담당하는 thread가 생성되었음을 확인하였습니다. 여기서 VSync Thread의 소스코드를 확인해 보는 것으로 이번 포스팅을 마치도록 하겠습니다. 다음 포스팅에서 계속 이어서 소스코드 설명을 진행하도록 하겠습니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | static void *vsync_loop(void *param) { const char* vsync_timestamp_fb0 = "/sys/class/graphics/fb0/vsync_event"; const char* vsync_timestamp_fb1 = "/sys/class/graphics/fb1/vsync_event"; int dpy = HWC_DISPLAY_PRIMARY; hwc_context_t * ctx = reinterpret_cast<hwc_context_t *>(param); char thread_name[64] = HWC_VSYNC_THREAD_NAME; prctl(PR_SET_NAME, (unsigned long) &thread_name, 0, 0, 0); setpriority(PRIO_PROCESS, 0, HAL_PRIORITY_URGENT_DISPLAY + android::PRIORITY_MORE_FAVORABLE); const int MAX_DATA = 64; static char vdata[MAX_DATA]; uint64_t cur_timestamp=0; ssize_t len = -1; int fd_timestamp = -1; int ret = 0; bool fb1_vsync = false; bool logvsync = false; char property[PROPERTY_VALUE_MAX]; if(property_get("debug.hwc.fakevsync", property, NULL) > 0) { if(atoi(property) == 1) ctx->vstate.fakevsync = true; } if(property_get("debug.hwc.logvsync", property, 0) > 0) { if(atoi(property) == 1) logvsync = true; } /* Currently read vsync timestamp from drivers e.g. VSYNC=41800875994 */ fd_timestamp = open(vsync_timestamp_fb0, O_RDONLY); if (fd_timestamp < 0) { // Make sure fb device is opened before starting this thread so this // never happens. ALOGE ("FATAL:%s:not able to open file:%s, %s", __FUNCTION__, (fb1_vsync) ? vsync_timestamp_fb1 : vsync_timestamp_fb0, strerror(errno)); ctx->vstate.fakevsync = true; } do { if (LIKELY(!ctx->vstate.fakevsync)) { len = pread(fd_timestamp, vdata, MAX_DATA, 0); if (len < 0) { // If the read was just interrupted - it is not a fatal error // In either case, just continue. if (errno != EAGAIN && errno != EINTR && errno != EBUSY) { ALOGE ("FATAL:%s:not able to read file:%s, %s", __FUNCTION__, vsync_timestamp_fb0, strerror(errno)); } continue; } // extract timestamp const char *str = vdata; if (!strncmp(str, "VSYNC=", strlen("VSYNC="))) { cur_timestamp = strtoull(str + strlen("VSYNC="), NULL, 0); } } else { usleep(16666); cur_timestamp = systemTime(); } // send timestamp to HAL if(ctx->vstate.enable) { ALOGD_IF (logvsync, "%s: timestamp %llu sent to HWC for %s", __FUNCTION__, cur_timestamp, "fb0"); ctx->proc->vsync(ctx->proc, dpy, cur_timestamp); } } while (true); if(fd_timestamp >= 0) close (fd_timestamp); return NULL; } | cs |
다음 포스팅에서 내용을 이어서 진행하도록 하겠습니다.